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Abstract

Imagine James Bond speaking like Mr. Bean—such a mismatch
would create a jarring dissonance and break the viewer’s immer-
sion. Current research on virtual avatar animation has focused
on modeling 3D geometry, appearance, motion generation, how-
ever, neglecting the harmony between speech prosody and the
avatar’s visual presentation and contextual environment. In this
paper, we seek to bridge this gap by firstly identifying and defining
the key elements necessary for achieving audiovisual harmony,
such as appearance, expression, body posture, backgrounds and
colors. Subsequently, we propose a method that jointly models
semantic consistency in avatar animation, named HarmoniVox,
specifically on crafting prosodic speech consistent with the avatar’s
essence from given visual image. To achieve this, we implement
a technical framework with a mutual modal contrastive learning
strategy, enhancing multimodal alignment in a coarse-to-fine fash-
ion. To support this method, we establish a experimental dataset
HarAvaSpeech comprising 28,929 image-audio pairs, designed to
encompass expressive speech prosody and rich avatar visual presen-
tations across a wide range of contexts. Leveraging this dataset, our
experiments demonstrate that the proposed method outperforms
the baselines in manipulating the nuanced tone and harmonious
rhythm of speech with the avatar visual presentations, and reveal
generalizability on out-of-domain cases. Demo would be provided
in https://harmonivox.github.io/harmonivox/.

CCS Concepts

• Applied computing → Media arts; • Information systems

→Multimedia content creation.

∗Corresponding authors: xyqin@tsinghua.edu.cn and jjia@tsinghua.edu.cn.

This work is licensed under a Creative Commons Attribution 4.0 International License.
MM ’25, Dublin, Ireland
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2035-2/2025/10
https://doi.org/10.1145/3746027.3755736

Keywords

Virtual Avatar Animation, Audiovisual Harmony, Multi-Modal Con-
trastive Learning

ACM Reference Format:

Songtao Zhou, Xiaoyu Qin, Yixuan Zhou, Qixin Wang, Zeyu Jin, Zixuan
Wang, ZhiyongWu, and Jia Jia. 2025. HarmoniVox: Painting Voices to Match
the Avatar’s Soul. In Proceedings of the 33rd ACM International Conference
on Multimedia (MM ’25), October 27–31, 2025, Dublin, Ireland. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3746027.3755736

1 Introduction

In virtual avatar animation, the harmony between speech and visual
presentation is as crucial as geometry modeling, appearance gen-
eration and motion control [49]. For example, would James Bond
speaking in Mr. Bean’s tone still appear as a tough, charismatic
spy in secret operation? Or, would Mulan talking like Snow White’s
voice still come across as the determined warrior in battlefields? The
character’s true essence, or “soul”, such as the role settings, scenario
settings and action settings, would be lost in this mismatch. There-
fore, it is significantly crucial to maintain the harmony between the
avatar voice with the internal attributes (such as appearance, per-
sonalities, etc.) reflected in visual presentations, to better conveying
the unified audiovisual experiences, as shown in Fig. 1.

Figure 1: Overview of virtual avatars attributes. In practical

applications of virtual avatars, all these attributes should

not only maintain consistency with one another but also

align with the contextual settings of role, scenario, action to

achieve a harmonious human-computer interactions.
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Figure 2: Overview of HarmoniVox, a model positioned in twomodalities implicitly extracts the visual contexts on the leftmost,

such as appearance, posture, and expression, then aligns them with vocal features shown on the rightmost, such as pitch and

energy, to achieve the audiovisual harmony. The solid gray arrows represent the data flow during the training and inference

processes, while the dashed arrows and the modules enclosed in dashed lines indicate components used only for training.

In this paper, we first seek to investigate the specific aspects of
harmony between voice and visual presentation that impact hu-
man perception. Some existing research has (1) generally proven,
from a stimuli perspective, that voice affects the attractiveness of
characters [49], and (2) examined the relationship between voice
and visual factors (such as facial skeletons) from a human cogni-
tion perspective [1, 6, 18, 27, 31, 48, 52]. Inspired by these research,
we identify and define the (a) five speech features that crucial for
emotional and intentional communication: timbre, rhythm, energy,
emotion and topic, and (b) five major components in visual pre-
sentation that related to speech features: appearance, expression,
posture, scene, and colors. To gain a deeper insight into the un-
derlying mechanism, we conduct semi-structured interviews and
subjective questionnaires to identify the visual components that
must remain consistent for each speech feature. Our interview re-
sults and survey findings highlight the importance to ensure the
audiovisual harmony of user perception through the combination
of explicit consistency and implicit consistency.

Derived from the survey findings, we propose a novel method to
jointly modeling the multi-modal consistency for virtual avatar, spe-
cialized on synthesizing harmonious speech with the key elements
reflected in given visual images. Our approach mainly address
issues of the cross-modal alignment from two aspects. Modality
harmonization: The inherent semantic mismatch between speech
and image modalities makes it challenging to achieve multi-modal
harmony. Inspired by the success of contrastive learning in image
captioning [40, 41] and speech captioning [66], we introduce Q-
former and a three-stage training pipeline for speech style-related
visual representation learning. Coarse-to-fine alignment: Despite the
great potential of contrastive learning in image/speech captioning
tasks, the modality differences between image and speech are far

greater than those between either modality and text. To enhance
learning efficiency, we propose a mutual modality contrastive learn-
ing (MMCL) strategy, which integrates coarse supervision from text
and fine supervision from audio to guide the Q-former in extracting
speech-style related visual representations. We implement a tech-
nical framework model to address the problem in an end-to-end
fashion, as illustrated in Fig. 2.

To support this method, we establish a bilingual image-speech
avatar dataset encompassing rich speech expressiveness and di-
verse visual scenes, with data from over 10,000 speakers. As shown
in Tab. 1, existing avatar datasets have limitations in visual con-
tents and speech expressiveness. To address these limitations, we
leverage Large Language Models to synthesize paired visual presen-
tation with highly-expressive emotional speech corpora, resulting
in a multimodal speech dataset HarAvaSpeech. To our knowledge,
HarAvaSpeech is the first bilingual multimodal dataset for avatar
animations that focus on the overall harmony between the visual
cues and speech styles. Leveraging the HarAvaSpeech dataset,
extensive experiments on the HarAvaSpeech demonstrate that our
method outperforms the baseline method in harmonious avatar
speech synthesis. The ablation studies have verified the effective-
ness of MMCL strategy in boosting the cross-modal alignment.
Comparative experiments have been conducted between theMEAD-
TTS [60] and HarAvaSpeech, evaluated on the out-of-domain test
set from Web. The results indicate that the model trained on Har-
AvaSpeech significantly outperforms MEAD-TTS [60] in gender
and emotion accuracy, verifying the effectiveness and superiority
of HarAvaSpeech dataset. To further illustrate the generalizability
of HarmoniVox, a case study on avatar speaking transcripts with
distinct visual presentations is provided in Sec. 6.4.

Summarily, the contributions of this paper are as follows:



HarmoniVox: Painting Voices to Match the Avatar’s Soul MM ’25, October 27–31, 2025, Dublin, Ireland

• WeproposeHarmoniVox, a novel cross-modalmodelingmethod
for virtual avatar animation, concentrating on manipulating
speech features with given visual images.

• We define the key framework of harmony between visual

images and speech, specifying five key visual components re-
lated to speech and their consistency with each speech feature.

• We propose a multi-modal contrastive learning strategy,
boosting the model in harmonizing a more nuanced tone and
rhythm of synthesized speech for both intra-domain and out-of-
domain inputs.

• We establish HarAvaSpeech, an AIGC-based multimodal
visual-text-speech dataset that collects the body and scene visual
context for the first time.

Table 1: A summary of multimodal avatar datasets. The

source can be categorized into YouTube, Studio, and AIGC.

Face, Body, and Scene indicate the corresponding visual in-

formation is provided or not.

Dataset Source Language Face Body Scene Speaker

VoxCeleb2 [10] YouTube EN ✓ ✗ ✗ 6,112
MEAD [60] Studio EN ✓ ✗ ✗ 60
MMFace4D [63] Studio ZH ✓ ✗ ✗ 465
HDTF [71] YouTube EN ✓ ✗ ✗ > 300
MEAD-TTS1 [23] Studio EN ✓ ✗ ✗ 47
HarAvaSpeech AIGC ZH+EN ✓ ✓ ✓ > 10,000
1 MEAD-TTS is derived from MEAD dataset.

2 Related Works

The section first reviews the cognitive study on the visual-vocal
relationship for human behaviors and then examines the relevant
research for virtual avatar animation.

2.1 Audiovisual Consistency in

Human Behaviors

The natural consistency between voice and visual identity has al-
ways been the hotspot in cognitive science. Research has shown
that the voice provides comparable information of identity as fa-
cial features do [31]. For instance, the facial skeletal measurements
have been found to significantly correlate with F0 and habitual
frequency [52]. Additionally Evans et al. [18] discover a signifi-
cant negative relationship between fundamental frequency and
measures of body shape and weight. These findings suggest that
people can match the unfamiliar voice with static face images [48].
Horiguchi et al. [27] further demonstrated that distances between
facial features and audio features can be utilized to to classify the
best-matched face according to audio clips.

Aside from timbre-related skeletal features, facial and bodymove-
ments also play a significant role in shaping perception. Studies
have pointed out that the static posture [12, 51], as well as the
direction and intensity of body sway [6], convey different emo-
tion states. For example, individuals with positive emotions tend to
lean forward and shown activation, while those with negative emo-
tions exhibit opposite behaviors [3]. Co-speech gestures, as shown
by Kelly and Tran [33], provide both emotional and cognitive func-
tions in various communicative contexts. Another form of implicit
consistency can be found in aesthetics considerations that prefer-
ences for color hues, such as saturation, contrast and brightness,
can reflect individual personalities and social contexts [35].

In this paper, we address both implicit and explicit consistency
within our defined framework, guided by insights from existing
literature and our empirical studies in Sec. 3.

2.2 Audiovisual Consistency for Virtual Avatar

The preference for harmony is rooted in human cognitive mecha-
nisms: research from psychology has shown people tends to rely on
cross-modal correspondences to perceive real-life objects [47, 54].
Therefore, mismatches betweenmulti-modalities can interrupt their
perception of the avatar [9]. This notion is not new—during the
era of World War I, Kandinsky et al. [32] have emphasized that
the sound, color, movements should work in harmony to serve the
creator’s intent [56]. Recent investigations into the interaction be-
tween modalities reveal how different aspects contribute to avatar
perception. Ondřej et al. [49] explored how voice, face motion, body
motion and appearance affect the distinctiveness and attractiveness
of characters. Ennis et al. [17] suggested that combining facial and
body motion can enhance the user’s perception of an avatar’s emo-
tional state. Ferstl et al. [19] argued that maximizing the realism of
speech and motion is preferable even when it leads to a mismatch
with the appearance realism.

However, existing research is mostly limited to highlighting the
necessity of multi-modal harmony. The specific contribution of
each pair of visual components and speech features to the overall
harmony remains an open question.

2.3 Virtual Avatar Animation

Recent research on the virtual avatar animation primarily focus
on the technological advancements in modeling of 3D geome-
try [5, 16, 42, 43], facial motion [13, 22, 24, 29, 45, 57–59, 63, 64, 70],
body motion [62, 68, 69] and appearance [65]. To tackle the audio-
visual harmony between speech and visual presentation, research
has primarily focused on speech-driven talking face and face-based
speech synthesis. Studies have explored on rendered-based gen-
eration with 3D geometry priors [57, 63, 64, 70] and video-based
generation with diffusion prior [13, 29, 45, 58]. Some research has
explored inferring timbres from human face [21, 23, 38, 44, 67].
Face2Speech [21], Face-VC [44] and Face-TTS [38] adopts face em-
bedding as a substitute for speaker embedding in speech synthesis.
MM-TTS [23] adopts the emotion and gender of the speaker in-
ferred from facial close-ups as implicit prompts for text-to-speech
under a multi-modal prompt framework. These aforementioned
works use 2D image-based methods, while 3D facial skeletal struc-
tures are reconstructed anatomically by Yang et al. [67] for better
timbre control.

Their investigation of the harmony of speech and visual images
is relatively insufficient. In this paper, we innovatively include the
comprehensive visual image (not just the face) in the consideration
of audiovisual harmony.

3 Specifying Harmonious Audiovisual

Consistency

In this section, we seek to answer the following question: what
specific aspects of visual and audio consistency need to be considered
in virtual avatar? Based on the existing literature, we first define
the key visual components and speech features. Subsequently, we
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Figure 3: The framework illustrates the underlying relationship between visual components and vocal characteristics in Sankey

diagram. The left side shows the key visual components of an image, and the right side displays the key speech style attributes.

Every flow refers to a correlation between two ends, with the width representing the strength of correlation.

recruited twelve individuals to conduct a twenty-minute interview
on their opinions about the visual-vocal relationship, and then come
up with a follow-up user survey for further investigation.

3.1 Harmony Framework

Among the attributes illustrated in Fig. 1, we select the following
five key visual components, as shown in left of Fig. 3: (1) Appear-
ance includes physical features, body shape, and attire, which serve
0as the external manifestation of the role. It encompasses attire
that indicates age and gender, as well as clothing that may suggest
the character’s career and scenario. (2) Expression refers to facial
expressions, which serve as the external manifestation of the action.
(3) Posture includes body posture and hand gestures, which rep-
resent the external manifestation of the action. (4) Scene includes
background elements, which serve as the external manifestation of
the scenario. (5) Color refers to the lighting, brightness, and color
tones in the background, serving as the external manifestation of
scenarios. As for the speech features, we identify five speech fea-
tures inspired by existing text-to-speech research [25, 28, 30, 39],
as shown in right of Fig. 3: (1) Timbre refers to the unique quality
or tone of a voice that helps identify one speaker from another. (2)
Rhythm pertains to the speed and cadence of speech. (3) Energy
refers to the volume or loudness. (4) Emotion is a higher-level
feature, capturing the affective state conveyed through voice. (5)
Topic relates to the content of the speech itself.

3.2 Empirical Study

For the interview, we invited 12 individuals aged 22 to 26 with
foundational knowledge in areas such as human factors, psychol-
ogy (art/design psychology), design, art, aesthetics, or experience
in audiovisual artistic creation and design work. During the semi-
structured interview, we requested participants to identify which
visual components are expected to align with each given speech
feature and to provide explanations. We organized the results by
computing the selection rate for each pair of visual and vocal el-
ements. Detailed results are provided in Appendix Fig. 4. We de-
fine pairs with more than 50% approval as explicit consistency, e.g.,
timbre and appearance, indicating that the consistency is widely
recognized and explicit. As for pairs with less than 50% but more

than 25% approval, e.g., emotion and color , we define them as
implicit consistency, as suggested by the participants.

To verify the interview findings, we conducted a quantitative sur-
vey on clips from multiple web platforms1. Twenty pairs of samples
are collected and processed into questionnaires, with the sample
source ranging across movies, TV series, talk shows, lectures, and
interviews. We select the most expressive keyframe image that
captures the character essence and corresponding audio clips and
ask another group of participants to rate them on a scale of one
to five, from not consistent to highly consistent. For each visual-
vocal attribute pair, we define the average rates over samples and
participants as the relevance value of the pair and construct the rel-
evance framework in Fig. 3, where only the highest 50% relevance
is preserved. The survey interface and the original score matrix
are provided in App. A (supplementary materials). Combined with
the interview findings, our results verify the existence of explicit
consistency, such as posture - emotion pairs and posture, and im-
plicit consistency, such as color - emotion. Although the scene is
mostly related to the topic, we will consider this during the dataset
construction process but will not address it in the methodology
section. The generation of speech content will be left for future
work. In the following sections, we will utilize these findings to
further enhance our research.

4 Painting Voice to Match Avatar’s Soul

This section elaborates on the method for multi-modal semantic
consistencymodeling, HarmoniVox, with a particular focus on how
we address modality harmonization and coarse-to-fine alignment.

4.1 Problem Formulation

We first formulate the avatar animation problem in the context of a
given visual image and content transcripts. Let 𝐼 be a visual image of
avatar, containing the five visual components: appearance 𝐼𝑎 , facial
expression 𝐼𝑓 , body posture 𝐼𝑏 , scene component 𝐼𝑠 and color 𝐼𝑐 . Let
𝑇 = {𝑐1, 𝑐2, . . . , 𝑐𝑛} be the transcripts, a sequence encompassing
multi-lingual characters. Our target is to implicitly infer the inner
states of avatar and cast them into talking style 𝑆 based on the
visual image 𝐼 . We then synthesize speech audio 𝐴 with style 𝑆 and

1http://youtube.com; http://bilibili.com; http://youku.com.

http://youtube.com
http://bilibili.com
http://youku.com


HarmoniVox: Painting Voices to Match the Avatar’s Soul MM ’25, October 27–31, 2025, Dublin, Ireland

content 𝑇 , as shown in Eq. (1).

𝐴 = 𝑓 (𝑆,𝑇 ) = 𝑓 (𝑆 (𝐼𝑎 ∪ 𝐼𝑓 ∪ 𝐼𝑏 ∪ 𝐼𝑠 ∪ 𝐼𝑐 ),𝑇 ), (1)
𝐴 = 𝑔(𝑆,𝑇 ) = 𝑔(𝑆 (𝐼𝑎 ∩ 𝐼𝑓 ),𝑇 ), (2)

While previous methods [21, 23, 67] focus on facial appearance
𝐼𝑓 ∩ 𝐼𝑎 , i.e., Eq. (2), this paper take a comprehensive approach by
considering the visual representations 𝐼𝑎 ∪ 𝐼𝑓 ∪ 𝐼𝑏 ∪ 𝐼𝑠 ∪ 𝐼𝑐 . Methods
like this can be integrated with speech-driven animation techniques
using the visual image, resulting in the final avatar videos.

4.2 Modality Harmonization

To tackle the modality harmonization, as illustrated in Fig. 2, we pro-
pose the HarmoniVox consisting of three modules: visual extractor,
Q-former, and speech decoder. For the visual contexts capture, we
adopt CLIP image encoder [53] as the contexts extractor. Pretrained
with over 0.4B pairs of samples, the CLIP model shows an out-
standing performance and generalizability in semantic extraction
and zero-shot classification [53]. For the speech style fusion, we
adopt VITS model [34, 37] as the speech backbone. Pretrained with
large-scale speech corpora, the VITS model demonstrates high-
fidelity speech reconstruction ability. To efficiently harness these
advantages, we introduce a Q-former with a contrastive learning
paradigm, which have demonstrated their effectiveness in cross-
modal alignment [40, 41, 66]. However, to our best knowledge,
we are the first to apply them to tackle the visual-vocal semantic
alignment issues. Taking the above into consideration, we design a
three-stage learning framework as follows (additional illustrations
are provided in App. B):
Stage I: Unsupervised Speech Style Learning. In this stage,
only pure speech data and VITS model are involved. To endow the
VITS model with powerful speech modeling capability, the speech
backbone including the speech encoder and speech decoder is first
unsupervisedly trained on large-scale emotional speech data. For
simplicity, we annotate all the training loss in this stage, including
the reconstruction loss and other items [37], as L𝑣𝑖𝑡𝑠 .
Stage II: Speech Style-Related Visual Representation Learn-

ing. In this stage, the paired data (image, speech) is utilized. The
Q-former is guided to learn the visual representation associated
with speech features, from both the speech encoder and CLIP image
encoder. We introduce the MMCL strategy, employing the coarse
speech description to enhance the guide the Q-former to learn the
speech style-related visual information.
Stage III: Vision-conditioned Speech Style Control. In this
stage, both the Q-former and speech decoder are trainable. The
Q-former is guided to learn the visual representation associated
with speech features, from the speech decoder. We directly connect
the Q-former with the speech decoder and employ L𝑣𝑖𝑡𝑠 as the
training objects on image-audio pairs.

4.3 Mutual Modal Contrastive Learning

The MMCL strategy is mainly applied in Stage. II, in which the
speech encoder and the image encoder are both frozen. There are
two sets of guidance in MMCL: Mutual Modal Contrastive Loss
and Mutual Modal Matching Loss. The former focuses on aligning
representations within a shared semantic space, while the latter
primarily relies on a matching classifier to guide the multimodal

Figure 4: Illustration of Mutual-Modal Contrastive Learning

strategy in Stage.II. The Q-former learns to extract speech-

related visual presentation from the supervision of ground-

truth speech audio and speech descriptions. The legend at

the bottom displays the losses and embeddings involved.

fusion [40, 41]. As shown in Fig. 4, there are three modal-specific
embeddings: image embedding 𝐸𝑖 , audio embedding 𝐸𝑎 and text
embedding 𝐸𝑡 . The 𝐸𝑖 and 𝐸𝑡 are both the output of Q-former2,
while the 𝐸𝑎 is the output of speech encoder.

Intuitively, our goal is to align the image embedding 𝐸𝑖 and the
speech embedding 𝐸𝑎 from the frozen speech encoder, as shown in
Fig. 4, We consider the image and audio paired in the dataset as the
matched pair and labeled them as positive, with the random pairs
considered as the unmatched pair and labeled as negative. Since 𝐸𝑖
and 𝐸𝑎 are both normalized, we employ the cosine similarity of them
as the logits for contrastive learning and donate the image-audio
loss as L𝑖𝑎𝑐 . To retrieve a finer-grained alignment of image and
audio, we utilize an extra set of linear layers to fuse the 𝐸𝑖 and 𝐸𝑎 ,
with an output linear layer to obtain the 2-class (positive/negative
samples) logits for the image-audio matching loss L𝑖𝑎𝑚 .

Vanilla contrastive learning strategy by BLIP 2 [40] and SE-
Cap [66] only deals with contrastive loss and matching loss across
two modalities. However, as the empirical findings suggest, both
explicit and implicit consistency should be considered. We leverage
the textual vocal descriptions to assist in training the image-audio
alignment, serving coarse speech styles to enhance the explicit con-
sistency such as appearance-timbre, expression-emotion. Inspired
by [40], the contrastive loss L𝑖𝑡𝑐 are derived from the uni-model
output of Q-former, 𝐸𝑖 and 𝐸𝑡 , since the style queries are forbidden
to attend to textual descriptions in this case. The matching loss
L𝑖𝑡𝑚 are derived from the bi-directional output of Q-former, in
which case the style queries and textual descriptions are concate-
nated together and allowed to attend to each other [40]. As for
2The Q-former implementation of deriving image and text embedding is similar to
BLIP 2 in https://github.com/salesforce/LAVIS/tree/main/projects/blip2.

https://github.com/salesforce/LAVIS/tree/main/projects/blip2


MM ’25, October 27–31, 2025, Dublin, Ireland Songtao Zhou et al.

text-audio contrastive learning, we adopt only the contrastive loss
L𝑎𝑡𝑐 for simplicity.

The total training loss for MMCL is

L = 𝜆𝑖𝑎 (L𝑖𝑎𝑚 + L𝑖𝑎𝑐 ) + 𝜆𝑖𝑡 (L𝑖𝑡𝑚 + L𝑖𝑡𝑐 ) + 𝜆𝑎𝑡L𝑎𝑡𝑐 . (3)

Considering the coarse-to-fine supervision of textual description
and speech audio, we set an annealing function for 𝜆𝑖𝑎 as we found
a fixed value for 𝜆𝑖𝑎 would downgrade the performance. Starting
from zero, the weight of L𝑖𝑎 increases gradually and reaches 1.

5 Augmenting Multimodal Dataset

This section presents our dataset construction pipeline instructed by
the defined key audiovisual framework of avatar harmony (Sec. 3).

As shown in Tab. 1, typical multimodal datasets for avatar ani-
mations such as MEAD [60] and MMFace4D [63] are collected in
recording studios, offering limited variations on scenario and role
settings. Meanwhile, face-speech datasets collected from YouTube,
such as VoxCeleb2 [10] and HDTF [71] provide only facial informa-
tion, missing the multi-consistency associated with the body move-
ments and surrounding backgrounds. To overcome the scarcity of
high-quality multimodal data, we turn to explore novel data sources
and construction methods.

Figure 5: Dataset construction pipeline for the Har-

AvaSpeech. LLM coverts vocal descriptions with transcripts

into visual descriptions. Then a text-to-image model visu-

alizes the portrait with more details. Together, the speech

audio and the synthesized images form a multimodal speech

dataset with enriched momentary visual contexts.

5.1 Modality Augmentation

The emergence of emotional speech datasets and natural language-
prompted speech datasets [25, 28, 30, 39] has garnered considerable
attention recently. These datasets utilize expert systems based on
audio understanding models to annotate pseudo-labels of high-
quality speech and re-paraphrase the labels into natural languages.
However, unlike [25, 28] and [30], we employ a generative model
to create high-quality human portraits for each audio sample after
retrieving the label-based vocal descriptions. This not only ensures

the diversity of visual contexts, but also improves the generalizabil-
ity across different speakers and contexts, making it more robust
in real-world applications. Specifically, we design the following
automatic pipeline for dataset collection as shown in Fig. 5.
• TextualModality Transferring:Given a carefully crafted prompt
template, LLMs first convert the vocal descriptions (textual de-
scriptions for speech characteristics) to visual descriptions (image
captions describing the scenarios of the speech).

• Visualization: Given the visual descriptions, text-to-image mod-
els synthesize the image capturing the essence of audio context
and speaking style, completing the vision piece for the language-
audio-vision speech dataset.
Before the first stage, we employ the tools from SpeechCraft [30]

to annotate the pseudo labels and intermediate vocal descriptions. In
the first stage, we employ GPT-3.5 turbo [7] as the textual modality
converter, as previous works [25, 28] have proved its effectiveness
in language processing. The prompt template of textual modality
transferring are provided App. C (supplementary materials). As for
the image generation, we employ DALL-E 3 for its state-of-the-art
prompt following ability [4]. As for the data quality control, great
efforts have been made during the post-processing to filter out the
low-quality and harmful content.

5.2 Multimodal Dataset HarAvaSpeech

Weobtain a bilingualmultimodal image-speech dataset HarAvaSpeech
based on an internal expressive speech dataset. HarAvaSpeech has
28,929 image-audio pairs, with 28,063 samples for training split, and
866 samples for testing split. We visualize the diversity of partial
attributes of the HarAvaSpeech in Fig. 6. Originating from large-
scale multi-speaker corpora, HarAvaSpeech has superiority both
in audio and visual diversities compared to existing multimodal
avatar datasets.

(a) Body posture. (b) Scene.

Figure 6: Visualization for the body posture and scene distri-

bution of HarAvaSpeech.

6 Experiments

This section conducts experiments and shows results. The quan-
titative and qualitative evaluations have proved the effectiveness
of the dataset and the superiority of the HarmoniVox and Har-
AvaSpeech.

6.1 Experimental Settings

Baseline Settings. To validate the performance of HarmoniVox,
we adopt a fair but straight-forward design as the baseline method,
such that the Q-former is trained with cosine similarity loss be-
tween image embedding and audio embedding (without contrastive
learning and MMCL strategy).
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Table 2: Quantitative and qualitative results for intra-domain and out-of-domain settings. For qualitative evaluations, sixteen

(-I) and ten participants (-O) were invited to rate the speech naturalness (QMOS) and audiovisual consistency (RMOS). The

suffixes ‘-I’ and ‘-O’ respectively represent the intra-domain settings and out-of-domain settings.

Intra-domain Settings Out-of-domain Settings

MCD Age Gender Pitch Energy Emotion Speed QMOS-I CMOS-I Age Gender Emotion QMOS-O CMOS-O

Ground-truth - - - - - - - 4.41±0.95 3.99±1.13 - - - - -
Baseline 10.5943 53.76 100.00 64.52 54.84 44.09 88.17 2.91±1.31 2.90±1.22 27.91 90.80 38.42 4.00±0.93 3.53±0.86
Proposed w/o descs 9.5823 58.06 98.92 63.44 64.52 50.54 96.77 3.32±1.14 3.04±1.06 28.90 89.98 37.60 4.21±0.92 3.53±0.92
Proposed 9.3991 56.99 97.85 65.59 65.59 58.06 96.77 3.23±1.10 3.02±1.10 23.81 90.64 40.39 4.31±0.91 4.08±0.91
Proposed w/o anneal 9.4266 58.06 97.85 58.06 63.44 49.46 95.70 - - - - - - -

Training Settings. In stage I, the VITS backbone with reference
speech encoder is pretrained on an internalMandarin speech dataset
and two English speech datasets: TextrolSpeech [28] andGigaspeech-
m [8]. At the early training stage, we additionally three large-
scale corpora to establish the training: AISHELL-3 [55], ZHVOICE3,
LibriTTS-R [36]. In Stage II, the model is trained on HarAvaSpeech
with textual description guidance.
Evaluation Settings. To evaluate the performance and generaliza-
tion ability of our model, the metrics we employed includes:
• Mel Cepstral Distortion (MCD)4 aims to evaluate the overall
distances between Mel frequency cepstral coefficient (MFCC)
vectors of ground-truth speech and synthesized speech.

• Classification Accuracy for speech attributes aims to mea-
sure the capability of speech style controlling from images in de-
tail. The classification of age and gender is based on the pretrained
wav2vec 2.0model [2] with a linear classification head on top. The
classification of emotion is achieved by Emotion2Vec model [46],
a universal self-supervised emotion recognition model open-
sourced. The classification of pitch, energy, and speed is based
on the audio processing tool librosa.

• Quality Mean Opinion Scale (QMOS) asks human raters to
evaluate the naturalness of speech on a scale from one to five,
ranging from quite unnatural to quite natural.

• Consistency Mean Opinion Scale (CMOS) asks human raters
to assess the audiovisual harmony between the visual image and
speech, ranging from quite unmatching to quite matching.
We conduct experiments in the following settings:

• Intra-domain settings. For the intra-domain settings, we adopt
the image and ground-truth audio from HarAvaSpeech. The
quantitative experiments in this setting utilize metrics including
MCD, and feature accuracy, while the qualitative metric QMOS
and CMOS with the ten samples randomly picked out.

• Out-of-domain settings. For the quantitative experiments, we
collect 550 real-human images from the web to test the gener-
alization capability. Due to the lack of ground-truth audio, only
the accuracy of age, gender, and emotion is computed based on
the image labels. For the qualitative experiments, we collect 20
real-human images from the web for inference.

6.2 Multi-modal Contrastive Learning Success

Analysis of Result. The quantitative and qualitative results of
both intra-domain and out-of-domain settings are illustrated in

3https://github.com/fighting41love/zhvoice.
4https://sypi.org/project/pymcd/.

Tab. 2. These results demonstrate that the proposed method sur-
passes the baseline method in both the naturalness and visual-
vocal consistency. Compared to the baseline method, our model
achieves lower MFCC distances between the synthesized audio
and ground-truth audio, showing a stronger reconstruction capa-
bility. Further, given a static portrait, the proposed model shows a
finer speech style control, leading to higher classification accuracy
for age, pitch, energy, emotion, and speed.Most importantly, in
terms of out-of-domain settings, our method demonstrates
better generalizability over the baseline method, with higher
values in emotion accuracy and subjective metrics.We credit
this to the MMCL strategy, aligning the speech-related visual rep-
resentation to the speech style space. Though the baseline method
could establish a connection between the visual embedding and the
audio embedding, the generative model with such a large amount
of trainable parameters (110M for BERT-base) would meet the prob-
lem of mode collapse [20]. On the contrary, the uniformity of latent
representation brought by the contrastive learning prevents the
generative model from the mode collapse problem[61]. As a result,
the proposed model achieves better performance with unseen cases.

Ablation Study. The proposed model demonstrates more intricate
emotional controllability and generalizability, validating the effec-
tiveness of MMCL strategy. However, its underlying mechanism
remains unclear, prompting us to conduct the following ablation
studies specifically targeting the MMCL strategy: (1) Proposed w/o
descs: The model is trained without the supervision of textual de-
scriptions, i.e., set 𝜆𝑖𝑡 = 𝜆𝑎𝑡 = 0. (2) Proposed w/o anneal: The model
is trained without annealing function, i.e. set fixed 𝜆𝑖𝑎 = 1.

As shown in Tab. 2, despite outperforming the baseline method,
the absence of the descriptions in cross-modal alignment leads
to a performance downgrade, especially in the emotion, pitch,
energy accuracy of intra-domain settings and the speech natural-
ness and audio-visual consistency of out-of-domain settings.
This indicates the effectiveness of textual descriptions in alleviating
the complicated audiovisual relations as expected. When learned
with textual supervision, the image embedding from the Q-former
first moves closer to the speech style subspaces, which guarantees
the stability of the gradient direction. Meanwhile, the model train-
ing without the annealing function shows a decrease in accuracy
for pitch, energy, emotion, and speed. This verifies the anneal-
ing function for efficiently integrating the multiple learning
objectives at each step.

Overall, these results indicate that our proposed method Har-
moniVox, especially the MMCL strategy, exhibits excellent perfor-
mance in stylizing speech harmonious with the visual presentation.

https://github.com/fighting41love/zhvoice
https://sypi.org/project/pymcd/
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Figure 7: Visualization of acoustic features of the synthesized speech along with the corresponding conditional images. For

every figure, the background demonstrates the mel-spectrogram, the brighter color, the larger amplitude. The fragmented red

curve outlined in white shows the pitch contour. The continuous blue curve outlined in white shows the energy intensity. The
horizontal orange dash line and the number above the line display the peak fundamental frequency (F0). The verticalwred dash

line displays the exact timestamp of one specific break in the transcripts. The light yellow bounding box indicates a worth

noting shift of F0 in the corresponding interval. The time-aligned transcripts are floating on the top of the figure.

6.3 Effectiveness of Synthesized Data

Collecting real-world data for training is challenging for our task.
However, to verify the effectiveness and superiority of HarAvaSpeech,
we have conducted a comparison experiment on the MEAD-TTS[1]
data with our proposed model. To make the comparison more fair,
the evaluation is conducted on the out-of-domain test set from
the web, which is completely orthogonal (non-overlapping) with
both MEAD-TTS [23] and HarAvaSpeech. The quantitative re-
sults presented in the Tab. 3 indicate that the model trained on
HarAvaSpeech exhibits significantly better performance than
MEAD-TTS in addressing explicit consistency, such as predict-
ing harmonious timbre and emotion for avatars, verifying the
robustness of our dataset.
Table 3: Quantitative results for Dataset Comparison with

the proposed method on out-of-domain testset.

Age Gender Emotion

MEAD-TTS 24.63 82.10 35.14
HarAvaSpeech (Ours) 23.81 90.64 40.39

6.4 Case Study

To illustrate the performance of our model, we select the synthe-
sized speech conditioned by four female portraits and visualize the
acoustic features (mel-spectrogram, F0, intensity) in Fig. 7. All the
portraits describe a potentially-talking scene where a young female
with sleek black hair is sitting in the room yet the hand gestures,
body posture, and facial expressions of the subject differ. For com-
parison, as shown in Fig. 7, we use the images of happy laughing
(the left top) and neutral states (the left bottom) to condition the
generation of the same English sentence, and the images of angry
shouting (the right top) and vaguely distracted (the right bottom)
to condition the generation of the same Mandarin sentence.

For the English sentence (the left samples), the top speech has
a higher pitch and faster speed compared to the bottom speech
generally, as the word break between ‘shortcut’ and ‘onto’ appears
earlier and the peak F0 is much higher as shown in the top figure.

Most importantly, the word ‘brightside’ is heavily emphasized in the
top speech, demonstrating a sharp increase in the pitch as shown in
the yellow bounding box. This is consistent with the widely open
mouth and the joyful expression in the conditional image.

For the Mandarin sentence (the right samples), the top speech
also has a higher pitch and faster speed in general, with an early
word break for the comma and a higher peak F0. In addition to the
sharp pitch jump in the first bounding box of the right top figure,
there’s a noticing pitch uplift at the tailing of the sentence,
conveying the furious emotion and contemptuous tone.

As shown in Fig. 7, our model exhibits a promising capability in
audiovisual harmony for virtual avatar. To be noted, in the two top
cases, the model automatically emphasizes the words ‘brightside’
and ‘这样’ (translation:‘this’), indicating that the model has learned
human habits of prosodic emphasis to intensify the emotion from
the large scale speech corpora.

7 Conclusion

In this paper, we focus on the crafting harmonious speech in con-
sistent with visual presentations for virtual avatar animation. First,
we systematically define the key audiovisual harmony framework
via empirical studies. Then, we proposed a multi-modal consistency
modeling method HarmoniVox, which outperforms the baseline
method by demonstrating a more profound visual control capability
in speech style control. To support the method, we employed gen-
erative AI to establish a multi-modal dataset HarAvaSpeech via
modality augmentation, tackling the data scarcity issue. Leveraging
HarAvaSpeech dataset, extensive experiments demonstrate that
the models trained on the synthesized dataset show generalization
ability for out-of-domain photos including emojis.

We also acknowledge the limitations of our research, such as the
multi-modal bias in dataset distributions. Future work includes the
balancing multi-modal distribution and integration of our approach
with avatar motion generation. Addressing these aspects constitutes
our future research directions, with the ultimate goal of achieving
a seamless, unified and harmonious user experience.
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